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ABSTRACT 
The handling and control of towed cable and body systems 

onboard surface ships and submarines presents a significant 
technical challenge to design engineers in the defense and ocean 
industries. The current approaches rely heavily on the empirical 
methods and the time-consuming and costly prototype testing. 
Computer simulation provides a cost effective way to reduce the 
high risks associated with the towed cable/body system. 
However, the current dynamic analysis of towed cables is 
mostly done by the finite difference (FD) method in stead of 
the finite element (FE) method that is widely used in almost all 
engineering fields. This paper presents an alternative FE 
method to simulate the dynamics of towed cable and body 
system, in which the large rigid body motion is coupled with 
small elastic deformation. The newly derived FE method is 
formulated in terms of element nodal positions, which is different 
from the existing FE methods that use displacements. The 
alternative FE method solves for the cable position directly in 
order to eliminate accumulated numerical errors arising from 
existing FE methods that solve for displacements first in order to 
obtain the cable position over very long period of time. The 
alternative FE formulation is implemented and applied to real 
applications to demonstrate its robustness by comparing 
simulation results with the experimental and sea trial data. 

1. INTRODUCTION 
Towed cable systems have a wide range of applications in 

science, industry, and defense. Examples of such systems 
include underwater mooring lines [1], towed sonar array and 
remote operated vehicles [2], aerial refueling hose and drogue 
[3], and tethered satellites [4], just to name a few. The cable is 
usually simplified as a flexible tension member and its bending 
stiffness is neglected because of the extremely large ratio of 
length over cross-section dimension [5]. The motion of the 
towed cable usually involves large rigid body motion and small 
elastic stretch. Linear cable theory is usually not adequate and 
the nonlinear geometric stiffness of the cable should be 
included to account for the geometric nonlinearity due to the 
large displacements and rotations experienced by the cable. 
Generally speaking, the dynamic analysis of the towed cable 
systems can be grouped into four categories: 1) analytical, 2) 
lumped parameter, 3) finite difference (FD), and 4) finite 
element (FE) method, respectively. 

The analytical solutions are only available in limited cases 
involving grossly simplified assumptions, such as the 
description of the steady state solution for a string [6]. The 
lumped parameter method simplifies the coupled nonlinear 
partial differential equations of motion into ordinary 
differential equations by lumping the distributed mass, external 
loads, inertia forces of the cable to specified nodes along the 
cable [7]. The finite difference method approximates the 
governing equations of a cable by some difference equations 
along the cable [8]. Solutions of the cable dynamics using FD 
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and lumped parameter methods are very popular and are 
predominant in the dynamic analysis of cable systems because 
of their mathematic simplicity; see the works of Burgess [9] 
and other researchers [10]. However, the FD and lumped 
parameter methods are problem specific and are not easy to be 
implemented in general-purpose analysis programs for complex 
geometries with multiple cable branches or different cable 
properties along the length. In the finite element method, the 
continuous cable is discretized into a finite number of elements. 
Each finite element may have different cable properties but the 
governing mathematic equations for each element are the same. 
By assembling all the elements together, the complex 
geometries with multiple cable branches or different cable 
properties along the length can be easily modeled 
algorithmically [5]. The FE method is probably the most 
appealing technique among all engineering numerical methods. 
The main advantage of FE over FD is its capability in handling 
the complex cable systems in an algorithmic fashion, allowing 
for its implementation in general-purpose analysis programs. 
However, the FE method has not yet been widely used in the 
dynamic modeling of towed cables compared with FD. 

The main reason that limits the FE application in cable 
dynamic analysis is that the towed cables usually experience 
very large rigid body motion and extremely small elastic 
stretch. The main interest in cable dynamic analysis is its 
position. The FD method formulates the cable dynamics in 
terms of its position directly while the existing FE methods 
solve for cable displacement first and then the new position of 
cable by adding the displacement to the old position. Because 
the large rigid body rotation of the cable leads to geometrical 
nonlinearity, improper approximation in calculating the strain 
of element based on displacement approach will result in 
numerical errors that do not exist in FD method, where the 
strain is calculated by comparing the current configuration with 
original configuration directly. For instance, let’s consider a 
planer cable element experiencing a rigid body rotation as 
shown in Fig. 1. The displacements of the element can be 
expressed as: 

 11  θcosxuu ,       sinxvv  1
 (1) 

The Green-Lagrangian strain of the element is defined as [11]: 
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Since the rigid body rotation of the cable element does not 
cause any deformation, the strain of the element should be zero. 
This is evident by substituting Eq. (1) into Eq. (2), such that: 
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The commonly used approximation in FE methods for the 
nonlinear strain expression in Eq. (2) can be written as, if the 
strain is small, 
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Substituting Eq. (1) into Eq. (3) leads to a spurious strain as 
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The spurious strain will become zero only if we assume the 
rigid body rotation is small, such that: 
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Thus, it is clear that this simple FE approximation is valid only 
for the small rotation or small increment if the large rigid body 
rotation is analyzed by an incremental solution. In addition to 
the large 2D rigid rotation, the problem is further complicated 
by the fact that large 3D rotations of the cable do not possess 
vector properties, as in the case of infinitesimal rotations. 
However, one can always calculate the strain correctly by 
directly comparing the element’s current length (using element 
position vector) with its original length without using the 
displacement approach. 

Advanced techniques to parameterize large 3D rotations 
are developed in the finite element approximation. These 
include Euler angles [12], Euler parameters, Rodrigues 
parameters or semi-tangential rotations [13, 14], Quaternion 
algebra [15], conformal rotation vector [16], rotational vector 
[17] and co-rotational formulation [18]. These techniques 
address the large rigid body rotation mentioned above with 
more accurate formulation and allow a much large rotation 
increment in an incremental solution. However, over a very 
long period time of simulation of flexible member such as 
cable, the accumulated error may lead to spurious energy 
increase in the simulated system resulting in numerical 
instability. The error in strain energy is mainly due to the 
existing FE methods calculating the strain energy by nodal 
displacements where the displacements caused by the large 
rigid body rotation is decoupled from the small elastic stretch 
of the cable approximately. Advanced energy-conserving FE 
method [19] has been developed to specially address the 
flexible member experiencing the large rigid body rotation. 
These existing efforts represent substantial and novel 
contributions in FE modeling of flexible member; however, 
their formulations are mathematically more complicated than 
the FD method used in the field. 
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Figure 1.  Cable element in large rigid body rotation. 
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The current study is motivated by the need of a simple and 
robust finite element method for the dynamic analysis of towed 
cables. As demonstrated above, the simple FE approximation, 
based on nodal displacement formulation, is problematic in 
dealing with the large rigid body displacements and rotations 
and more advanced and accurate FE approximation 
formulations are needed. However, these advanced 
formulations are usually more complex than the FD methods 
used in the field. To take FE’s advantage in modeling flexibility 
and FD’s advantage in simplicity, an alternative finite element 
method has been developed by solving for the position vector 
of an element directly instead of the nodal displacements first 
in order to obtain the new position of the element indirectly. 
Thus, the position vector finite element method will (i) have no 
limitation in dealing with the large rigid body rotations, and (ii) 
eliminate the approximation and accumulation errors in strain 
energy of simulated system arising from the incremental 
solution process by comparing the current configuration of 
element (through nodal position) with its original configuration 
directly. In addition, the formulation of the position vector 
finite element method is simple and straightforward, especially 
in dealing with the external loads such as drag. The newly 
derived position vector finite element method has been 
validated by experiments including sea trials. 

2. POSITION VECTOR FINITE ELEMENT METHOD 
Consider a two-noded straight cable element in a three-

dimensional space. The element geometry is described by its 
nodal coordinates (Xi, Yi, Zi) (i = 1, 2) in the global coordinate 
system OXYZ. Local coordinates x, y and z are defined with x-
axis along the cable, y and z perpendicular to the x-axis, 
respectively. 

Assume the coordinates of an arbitrary point along the 
cable element is expressed in terms of element shape functions 
and nodal coordinates, such that: 

eNXR   (4) 

where R = {X, Y, Z}T is the global position vector of the 
arbitrary point, Xe = {X1, Y1, Z1, X2, Y2, Z2}

T is the global nodal 
coordinates and N is the element shape functions. In this 
application, the linear shape functions are used for the cable 
element, such as, 
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where 
    11N ,      2N ,   Lx /  
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and L is the current length of the cable element. 
Similarly, the velocity and acceleration of the element will 

be interpolated by the same element shape functions such that: 

eXNRv   ,  and  
eXNRa    (6) 

where v = {vx, vy, vz}
T and a = {ax, ay, az}

T are the global 
velocity and acceleration vectors of the arbitrary point. 

The deformation of the cable element is defined as: 
 00 LLxxu    (7) 

where x0 and x are the coordinates of an arbitrary point along 
the element before and after deformation and L0 is the length of 
undeformed element. 

The Green-Lagrangian strain of the element is defined as: 
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where the directional cosines are defined as: 
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and B is the strain matrix, such that: 
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The strain matrix B can be further decomposed into the 

product of the strain matrix in the local coordinates of element 
B0 and the coordinate transformation matrix Q, such as: 

QBB 0  (11) 

where 
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It should be noted that local strain matrix B0 is the same as 
the existing finite element method.  

2.1  Mass Matrix 
The mass matrix is derived from the kinetic energy of the 

element, such that: 
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where M is the mass matrix of the cable element 
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In the above equation,  and A are the material density and 
cross section area of the cable element, respectively. It should 
be noted that the element mass matrix is constant in the global 
coordinate system. 

2.2  Stiffness Matrix 
The stiffness matrix can be derived from the strain energy 

of the element, such that: 
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where E is Young’s modulus of the cable element, K is the 
stiffness matrix of the element and Fk is the generalized nodal 
force vector resulting from the elasticity of the cable element, 
such as: 
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Note Fk does not exist in existing FE methods. For small strain 
deformations, L/L0 = 1+x ≈ 1. Then, the matrix K0 is simplified 
to the stiffness matrix of the existing cable element. The K and 
Fk are highly nonlinear and time-dependant as the coordinate 
transformation matrix Q is the function of the orientation of the 
cable element that varies in time. It should be noted that the 
stiffness matrix K of the position vector FE method does not 
decouple into the linear and nonlinear geometric stiffness 
matrices because it calculates the strain directly from position 
vector instead of displacement. 

2.3  Material Viscous Damping Matrix 
The material damping effect of the cable is assumed as 

viscous damping, such that: 

eXB  cc xv    (14) 

where c is the viscous damping coefficient. 
Then the virtual work done by the viscous damping force 

is given by: 
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where C = cK is the viscous damping matrix, K is the stiffness 
matrix of the cable element defined in Eq. (13) and  is the 
variational operator, respectively. 

2.4  Fluid Dynamic Force Vectors 
For the application in towed cables, the fluid dynamic 

effects of the drag and added mass must be included [20]: 
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where fdn and fdt are the drag forces normal and tangent to the 
element, Cdn() and Cdt() are the normal and tangent loading 
functions of the drag,  is the angle of attack, ρ0 is the fluid 
density, D is the cable diameter, fa is the inertial force normal to 
the element resulting from the added mass of fluid surrounding 
the element, Cm is the added mass coefficient of the element, I 
is the unit matrix, and Vc is the free stream velocity of the fluid, 
respectively. 

The virtual work done by the inertial force of the added 
mass effect is given by: 

a

L

a dxW FXXMXRf T
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 (17) 

where Ma is the added mass matrix resulting from the fluid 
surrounding the element, and Fa is the inertial force due to the 
added mass of the fluid surrounding the element, respectively. 
In the above equation, the added mass matrix and the inertia 
force vector are given by: 
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where I3x3 is the unity matrix of 3 by 3, and 
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cV  is the fluid 

acceleration vector at the element nodes. It should be noted that 
both the added mass matrix and the inertial force vector are 
highly nonlinear and time dependent as the element’s 
orientation varies in time. 

The drag forces will be calculated in the local element 
coordinates. Assume the local coordinate system is constructed 
in a such way that the x-axis is aligned with the cable element, 
the y-axis is aligned in the plane containing the x-axis and the 
relative fluid velocity vector but normal to the element, and the 
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z-axis is the cross product of x and y. Thus, the fluid velocity 
relative to the element in the local coordinates can be expressed 
as: 

 Tcycx ,vy,vx 0  cvrv  (19) 

where r and vc are the position vectors of an arbitrary point 
along the cable element and the fluid velocity in local 
coordinates, respectively. Assume the position vector r and the 
fluid velocity vc are interpolated by the same element shape 
functions in Eq. (5), such that, 

eNxr  ,     e
cc Nvv   (20) 

where xe = (xe1, ye1, ze1, xe2, ye2, ze2)
T is the local nodal 

coordinate vector of element and e
cv = (vcx1, vcy1, vcz1, vcx2, vcy2, 

vcz2)
T is the vector of fluid velocity at the element nodes in local 

coordinates, respectively. 
From Eq. (16a,b), the drag force vector in the local 

coordinates can be expressed as: 

        0signsign
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Therefore, the virtual work done by the drag forces is 
given by: 
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where e
df  is the equivalent nodal drag forces in the local 

coordinates, such that: 
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Note that the drag force vector is a nonlinear function of 
the unknown nodal velocity 

ex of the element. 

Finally, the equivalent nodal drag force vector in the global 
coordinates is obtained by the coordinate transformation, such 
that: 

e
d

T
d fTF   (23) 

where TT is the coordinate transformation matrix from the local 
coordinates to the global coordinates systems. 

2.7  Buoyant and Gravity Force Vector 
Assume the buoyant force is given in the global 

coordinates, such as: 
  TgρρA,  ,  000 bgf  (24) 

where A is the cross section area of the element,  and 0 are 
the densities of material and fluid, and g is the acceleration due 
to gravity, respectively. 

Accordingly, the virtual work done by the force is: 
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where Fbg is the equivalent nodal buoyant force vector, such 
that: 
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The expression of the equivalent nodal buoyant and 
gravity force vectors is constant in the global coordinate 
system. 

2.8  Equation of Motion 
The equation of motion is derived from the principle of 

virtual work in dynamics, such that: 
0 bgdav WWWWTU   (26) 

Substituting Eqs. (12,13,15,22,25) into Eq. (42) leads to 
the equation of motion as: 

  ga bdkeeea FFFFKXXCXMM    (27) 

The equation of motion in Eq. (27) is highly nonlinear 
because the matrices of added mass, damping, and stiffness on 
the left hand side and the force vectors of on the right are the 
functions of the current position Xe and its velocity 

eX . 

3. VALIDATION AND APPLICATION 
The newly derived position vector finite element method 

for the cable dynamics has been implemented into a computer 
program and the 4th order Runge-Kutta numerical integrator is 
adopted to solve the equation of motion numerically. The 
program has been validated with laboratory experiments and 
sea trials of real towed cable system. 

3.1  Submerged Cable Snapping in Water 
An experimentally examined submerged cable system [21] 

was investigated to validate the applicability and robustness of 
the position vector finite element method. The system consisted 
of a steel aircraft type cable with a spherical payload attached 
at the cable’s lower end. The system was excited by a 
sinusoidal motion at the top support of the cable. Table 1-2 give 
the parameters of the cable and the payload. The cable was 
modeled by five cable elements with equal length while the 
payload was modeled as a lumped mass element. The time 
integration step was t = 0.05s. The cable tension responses at 
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the upper support to the external excitation with different 
frequencies were analyzed. Figure 2 shows the cable tensions at 
the top end when the exciting frequency was less than the 
natural frequency of the submerged cable system. The results 
are normalized by the static tension T0. Compared with the 
experimental data, the simulated cable tension agrees with the 
experimental data very well. As the frequency of excitation 
approaches the natural frequency of the submerged cable 
system, the cable experiences a transition from being slack to 
being taut as shown in Fig.3. The simulation results agree with 
the experimental data well even in this unstable condition. It 
demonstrates that the newly derived position vector finite 
element method is robust and accurate. 

 
Table 1.  Mechanical properties of cable specimen. 

Diamete
r (mm) 

Length 
(m) 

No. of 
Strands 

Density 
(kg/m) 

Rigidity 
EA (kN) 

Drag Coeff. 
Cdn Cdt

1.6 18.9 7x7 0.0112 134.2 1.2 0.01 
 

Table 2.  Mechanical properties of payload sphere. 
Diameter 

(mm) 
Mass 
(kg) 

Drag Coeff. 
Cd 

Added Mass Coeff.
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Figure 2. Tension at frequency, f = 0.807 Hz. 
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3.2  Submerged Cable and Towed-Body System 
Consider a submerged cable and towed-body system towed 

by a surface ship tested in a sea trial. The cable and body were 
towed at 22.2 km/h (12 knots) speed while the ship executed a 
270 degree turn. The total cable length was 460 m with 125 m 
fairing cable at the bottom and 355 m bare cable at the top. The 
drag loading functions of the bare cable are given in Eq. (28): 

  2cos001.0sin02.0cos0239.0019.00  DCDt
 

2
0 sinDCDn   (28) 

while the drag loading functions of the fairing cable are given 
in Eq. (29): 
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The bare cable was divided into nine equally spaced elements 
while the fairing cable was divided into three equally spaced 
elements. The towed-body was modeled as a rigid body. 
Tables 3 and 4 show the parameters of the cable and towed 
body system. Measured ship motion at the towing point was 
used as an input to the cable and towed-body system. Figure 4 
shows the measured ship trajectory (thick line) together with 
the simulated body’s trajectory (thin line) in the horizontal 
plane. The towed body followed the ship’s trajectory very 
closely as expected. The simulated time history of body’s depth 
was then compared with the measured data in Fig. 5. Good 
agreement is observed between the simulation and the trial 
data. 

Table 3.  Parameters of cable. 
Cable 
Type 

Diameter 
(m) 

Density 
(kg/m) 

Drag 
D0 

Elasticity 
EA (kN) 

Bare 0.0411 5.20 1.70 
2.625104 

Fairing 0.0800 8.32 0.15 
Table 4.  Parameters of towed body. 

Mass (kg) 9,500 Ixx (kgm2) – Forward 3,804 
Volume (m3) 6.25 Iyy (kgm2) – Side 10,363 
Length (m) 3.81 Izz (kgm2)  Downward 8,375 
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Figure 4.  Horizontal trajectories of ship and body. 
 

FEA Trial

 
Figure 5. Time history of towed body’s depth. 

CONCLUSION 
This paper presents an alternative finite element method to 

model the dynamics of towed cable system. It is formulated in 
terms of element nodal position instead of nodal displacement 
used in the existing FE methods, in order to take FE’s 
advantage in modeling flexibility and FD’s advantage in 
simplicity as well as to eliminate the accumulated errors arising 
from existing FE methods that solve for displacements first in 
order to obtain the cable position over very long period of time. 
Simulation results show that this newly derived FE method is 
simple, robust, and effective as seen in comparisons with 
experimental and sea trial data. 
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